Welcome to Apple Tree Infotech: call for any Course Enquiry: 7503962162
Have any question? +91 7503962162

OVERVIEW

Well come to Apple Tree Infotech come with us,

Data science is an interdisciplinary field that uses scientific methods, processes, algorithms, and systems to extract knowledge and insights from structured and unstructured data. It involves the use of techniques from statistics, data analysis, machine learning, and computer science to extract insights and knowledge from data. Data science can be applied in a wide range of fields, including business, healthcare, finance, and government, among others. The goal of data science is to turn raw data into actionable insights that can inform decision-making and improve outcomes.

Data Science Development Training Course

DATA SCIENCE SYLLABUS

Core Data Science
  1. • Selecting rows/observations
  2. • Rounding Number
  3. • Selecting columns/fields
  4. • Merging data
  5. • Data aggregation
  6. • Data munging techniques
  1. • What is Python?
  2. • Why Python?
  3. • Installing Python
  4. • Python IDEs
  5. • Jupyter Notebook Overview
  1. • Python Basic Data types
  2. • Lists
  3. • Slicing
  4. • IF statements
  5. • Loops
  6. • Dictionaries
  7. • Tuples
  8. • Functions
  9. • Array
  10. • Selection by position & Labels
  1. • Pandas
  2. • Numpy
  3. • Sci-kit Learn
  4. • Mat-plot library
  1. • Reading CSV files
  2. • Saving in Python data
  3. • Loading Python data objects
  4. • Writing data to CSV file
  1. • Selecting rows/observations
  2. • Rounding Number
  3. • Selecting columns/fields
  4. • Merging data
  5. • Data aggregation
  6. • Data munging techniques
  1. • Central Tendency
    • o Mean
    • o Median
    • o Mode
    • o Skewness
    • o Normal Distribution
  2. • Probability Basics
    • o What does it mean by probability?
    • o Types of Probability
    • o ODDS Ratio?
  3. • Standard Deviation
    • o Data deviation & distribution
    • o Variance
  4. • Bias variance Tradeoff
    • o Underfitting
    • o Overfitting
  5. • Distance metrics
    • o Euclidean Distance
    • o Manhattan Distance
  6. • Outlier analysis
    • o What is an Outlier?
    • o Inter Quartile Range
    • o Box & whisker plot
    • o Upper Whisker
    • o Lower Whisker
    • o Scatter plot
    • o Cook’s Distance
  7. • Missing Value treatment
    • o What is NA?
    • o Central Imputation
    • o KNN imputation
    • o Dummification
  8. • Correlation
    • o Pearson correlation
    • o positive & Negative correlation
  1. • Classification
    • o Confusion Matrix
    • o Precision
    • o Recall
    • o Specificity
    • o F1 Score
  2. • Regression
    • o MSE
    • o RMSE
    • o MAPE
Advance Data Science
    Tableau
  1. • Start Page
  2. • Show Me
  3. • Connecting to Excel Files
  4. • Connecting to Text Files
  5. • Connect to Microsoft SQL Server
  6. • Connecting to Microsoft Analysis Services
  7. • Creating and Removing Hierarchies
  8. • Bins
  9. • Joining Tables
  10. • Data Blending
  1. • Arameters
  2. • Grouping Example 1
  3. • Grouping Example 2
  4. • Edit Groups
  5. • Set
  6. • Combined Sets
  7. • Creating a First Report
  8. • Data Labels
  9. • Create Folders
  10. • Sorting Data
  11. • Add Totals, Subtotals and Grand Totals to Report
  1. • Area Chart
  2. • Bar Chart
  3. • Box Plot
  4. • Bubble Chart
  5. • Bump Chart
  6. • Bullet Graph
  7. • Circle Views
  8. • Dual Combination Chart
  9. • Dual Lines Chart
  10. • Funnel Chart
  11. • Traditional Funnel Charts
  12. • Gantt Chart
  13. • Grouped Bar or Side by Side Bars Chart
  14. • Heatmap
  15. • Highlight Table
  16. • Histogram
  17. • Cumulative Histogram
  18. • Line Chart
  19. • Lollipop Chart
  20. • Pareto Chart
  21. • Pie Chart
  22. • Scatter Plot
  23. • Stacked Bar Chart
  24. • Text Label
  25. • Tree Map
  26. • Word Cloud
  27. • Waterfall Chart
  1. • Dual Axis Reports
  2. • Blended Axis
  3. • Individual Axis
  4. • Add Reference Lines
  5. • Reference Bands
  6. • Reference Distributions
  7. • Basic Maps
  8. • Symbol Map
  9. • Use Google Maps
  10. • Mapbox Maps as a Background Map
  11. • WMS Server Map as a Background Map
  1. • Calculated Fields
  2. • Basic Approach to Calculate Rank
  3. • Advanced Approach to Calculate Ra
  4. • Calculating Running Total
  5. • Filters Introduction
  6. • Quick Filters
  7. • Filters on Dimensions
  8. • Conditional Filters
  9. • Top and Bottom Filters
  10. • Filters on Measures
  11. • Context Filters
  12. • Slicing Fliters
  13. • Data Source Filters
  14. • Extract Filters

Skills and Experience

JAVA Programming
80%
Designing
75%
Logical Concept
90%
DBMS Concept
70%
Copyright © Apple Tree infotech 2015.All right reserved.Created by Apple Tree Infotech Developed by AKASH, Sunita, Alka and Mujahid
Privacy Policy , Terms & Conditions